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Abstract 

Background The ActivityStat hypothesis proposes that an increase or decrease in physical activity (PA) greater 
than a certain set point activates behavioural and/or energy compensatory responses to maintain a stable level 
of total energy expenditure. Few studies have tested this hypothesis in children and even fewer have focused 
on young children. Therefore, the purpose of this study was to investigate the ActivityStat hypothesis by examining 
the presence and timeframe of the relationships among PA levels and stationary time (ST) in preschool-aged children.

Methods A secondary analysis was performed on repeated measurement data (i.e., day-to-day activity) involving 
98 preschool-aged children (age: 4.5 ± 0.7 years) in Edmonton, Canada. Participants were asked to wear an ActiGraph 
wGT3X-BT on the waist for 7 consecutive days to assess PA levels (i.e., light PA [LPA], and moderate-to-vigorous 
PA[MVPA]) and ST. Bayesian continuous-time structural equation modeling (CT-SEM) was used to examine the rela-
tionship between behaviours over time and the timeframe during which these relationships occur.

Results Each behaviour (i.e., LPA, MVPA, and ST) positively and meaningfully predicted itself at a later time. These 
relationships persisted up to 0.5 days later, at which point past behaviour no longer meaningfully predicted future 
behaviour. In contrast, no relationships were observed between the three behaviours.

Conclusions This is the first study to investigate the ActivityStat hypothesis using Bayesian CT-SEM in preschool-
aged children. When simultaneously taking into account all dynamic relationships suggested by the ActivityStat, 
the findings fail to support the hypothesis.

Keywords Activity compensation, Movement, Sedentary behaviour, Accelerometery, Child

Introduction
To experience the health benefits of physical activity 
(PA), public health guidelines recommend preschool-
aged children (under 5  years old) accumulate 180  min 
of PA daily, including at least 60  min of moderate-to-
vigorous PA (MVPA), and limit time spent sedentary [1]. 
However, a majority of children have insufficient levels of 
PA and spend long hours in sedentary-related behaviours 
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globally [2]. To date, efforts to produce sustained changes 
in health-enhancing PA and sedentary behaviour (SB) 
remain a formidable challenge [3]. Thus, new perspec-
tives are needed to understand the mechanisms under-
pinning children’s activity patterns. Biological factors, for 
instance, may also influence how individuals engage in 
PA but investigation in this area is scarce [4].

The ActivityStat hypothesis proposes that humans have 
biological mechanisms that regulate the extent to which 
individuals engage in PA [5]. It is hypothesized that an 
internal biological control center (i.e., hypothalamus) is 
activated when total energy expenditure reaches its set 
point triggering a cascade of compensatory mechanisms 
to return the system back to its steady state [4–6]. Specif-
ically, an increase or decrease in PA greater than a certain 
set point activates behavioural and/or energy compensa-
tory responses to maintain a stable level of total energy 
expenditure. This evolutionary trait keeps energy require-
ments in check while prioritizing and allocating energy to 
reproductive fitness and survival [6]. In studies involv-
ing children, both within- and between-days have been 
examined for evidence of behavioural compensation. For 
instance, within-day activity compensation was observed 
in children who had an active morning commute and 
then walked less throughout the day [7]. As for between-
days compensatory effects, Ridgers et al. [8] showed that 
for every additional 10 min of MVPA on one day resulted 
in a reduction of 9.3 min of MVPA and 16.8 min of LPA 
the following day in children 8–11 years of age. Likewise, 
associations between sitting and PA both within- and 
between-days show that children may compensate for 
increased sitting, standing, and stepping [9]. However, 
other empirical studies and systematic reviews do not 
support compensatory mechanisms in this population [5, 
10, 11]. Thus, the ActivityStat presents an intriguing area 
for further study. Additionally, preschool-aged children 
are underrepresented in studies examining compensatory 
mechanisms of PA and SB, suggesting a new avenue of 
research.

A lack or inadequate alignment between theory (i.e., 
ActivityStat), methods, and statistical modelling may 
explain inconsistent findings in the literature [12]. Stud-
ies investigating the ActivityStat hypothesis have mainly 
used traditional longitudinal multilevel models (e.g., hier-
archical linear models, mixed models) [8, 11, 13]. These 
include the analysis of static mechanisms using univari-
ate approaches focusing on the relationship among the 
constructs in one direction or the other. For example, 
to understand how a change in individuals’ MVPA at 
one point results in changes in SB at a subsequent point 
in time, separate analyses examining the relationship 
of MVPA on SB, and the relationship of SB on MVPA 
are typically conducted. However, without accounting 

for autoregressive effects (i.e., the relationship within 
the same variable over time) of all study variables and 
the reciprocal cross-lagged effect (i.e., the relationship 
between variables over time) within the same analysis, 
the observed lagged effects will be artificially inflated 
[14]. Therefore, findings for the ActivityStat hypothesis 
that are based on traditional longitudinal multilevel mod-
els should be interpreted with caution.

Instead, dynamic modelling methods are more appro-
priate for examining the ActivityStat hypothesis for sev-
eral reasons. Specifically, such modelling methods: (1) 
account for multivariate reciprocal relationships between 
the constructs studied; (2) allow the analysis of variables 
that act both as predictor and outcome variables; and 
(3) include testing of a system as a whole, with all rele-
vant constructs in one model [15]. For instance, contin-
uous-time structural equation models (CT-SEM) treat 
dynamic processes as a function of the continuous vari-
able of time. Thus, findings can be generalized to other 
timeframes providing a complete picture of how a phe-
nomenon unfolds over time [16, 17]. Additionally, a novel 
advantage of CT-SEM is it can help answer research 
questions regarding the temporal specificity (i.e., time-
frame) of when the behavioural compensation may occur 
(e.g., acute effect, between days, between multiple days).

Therefore, the current study aims to investigate the 
ActivityStat hypothesis in preschool-aged children by 
using CT-SEM to (1) examine the presence of continu-
ous-time multivariate relationships between PA levels 
(operationalized by LPA and MVPA) and SB (as repre-
sented by stationary time [ST]) [18], and (2) explore the 
temporal specificity underlying the multivariate relation-
ships between PA levels and ST.

Methods
Participants and procedure
This study involved a secondary analysis of data derived 
from the Parent–Child Movement Behaviours and Pre-
School Children’s Development project [19]. The original 
cross-sectional study recruited children, aged 3–5 years, 
and their families in Edmonton, Canada and surrounding 
areas through a program that aims to teach fundamental 
sport skills through play. A total of 131 children initially 
agreed to participate and data collection occurred from 
July to November 2018. For both the primary and sec-
ondary analysis, approval was granted by the University 
of Alberta research ethics board.

Measures
LPA, MVPA, and ST were measured with ActiGraph 
wGT3X-BT accelerometers. Because this accelerometer 
is limited in reliably estimating body posture [20], the rec-
ommendation is to use ST to represent sedentary-related 
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behaviors [18]. Specifically, ST refers to the time spent in 
“any waking behavior done while lying, reclining, sitting, 
or standing, with no ambulation, irrespective of energy 
expenditure” [18]. Participants were instructed to wear 
the accelerometer on an elastic belt on their right hip for 
24 h a day over 7 days, except during water-based activi-
ties. The devices were programmed at 30 Hz for sampling 
frequency and the data were downloaded in 15-s epochs 
for both normal filter files and low frequency extension 
filter files. The normal filtered files were used to catego-
rize children’s LPA (26–419 counts/15  s), MVPA (≥ 420 
counts/15 s), and ST (≤ 25 counts/15 s). Days with valid 
wear time of at least 10 h/day (i.e., 600 min) and a mini-
mum of 3 days represented a valid and reliable estimate 
for PA and ST via accelerometry [21], and non-wear time 
was removed (≥ 20 min consecutive 0 counts [22]). Min-
utes per day for LPA, MVPA, and ST were then included 
in the analysis. Though sleep is part of the activity spec-
trum [23], and should be considered when testing the 
ActivityStat hypothesis, its inclusion in the current analy-
sis was not possible due to model complexity in CT-SEM. 
Regardless, the focus on PA and ST allows for compari-
sons with previous studies on the topic [7–9, 11].

Statistical analysis
Accelerometry data were structured in a stacked format 
(i.e., long format) and a time index variable was cre-
ated to identify each time-point (i.e., day, t = 0–6). Data 
were standardized, and grand-mean centered to facili-
tate model convergence. Bayesian CT-SEM uses distinct 
modeling allowing for more flexibility compared to tra-
ditional longitudinal multilevel models [16]. For exam-
ple, Bayesian estimation methods are robust to moderate 
violations of the normality assumption [24]. Regardless, 
the shape of the distributions for the outcomes of inter-
est were visually inspected and all appeared normal. 
Due to the use of a continuous-time framework for this 
study, missing data were considered missing at random. 
Specifically, it was interpreted as reflecting unequal time 
intervals between measurements [25]. Further, Bayesian 
CT-SEM does not impose any restriction on sample size 
and length of time series (i.e., minimum number of days 
or other time period/s) [16]. The models were fit using 
the ctsem package [26], which interfaces to Stan [27] in 
the R 4.2.1 environment [28]. We computed a CT-SEM 
model examining the multivariate dynamic system with 
reciprocal relationships between LPA, MVPA, and ST.

As recommended for Bayesian models, the default 
burn-in (50% of the chain [i.e., one sequence of ran-
domly sampled values]), the default aggregation sta-
tistic (mean of the chain), and the default priors were 
used [16]. The model (i.e., LPA, MVPA, ST) was run 

using a NUTS (No U-Turn sampler) with four chains 
and 20,000 iterations per chain [29]. For the model 
convergence and statistic precision, the potential scale 
reduction factor R and effective sample size  (Neff) were 
reported [29]. A fully random effects model was first 
constructed, however, it showed problems with model 
fit. A random intercept only model was also performed 
presenting a better fit with an adequate model conver-
gence and precision. The inclusion of the random inter-
cept in the model allows variation in the intercept only 
resulting in similar parameters estimated in the model, 
thus accommodating stable individual differences, but 
not individual differences in the dynamic relationships. 
As the ActivityStat hypothesis proposes that these 
compensatory mechanisms occur within-individuals 
[5], marked differences in these compensatory dynam-
ics between individuals were outside the scope of this 
study. Thus, the latter findings are presented here. 
Further details about the complete code and the fully 
random effects model output illustrating the pattern of 
results can be obtained from the authors.

The auto- and cross-effects parameters are of primary 
interest for answering the main research question and 
refer to the continuous-time parameters presented in 
the drift matrix. The auto-effects reflect the stability 
(or persistence) of the relationship within a behaviour 
over time. The cross-effects describe the reciprocal 
effects of one variable on the other. The autoregressive 
and cross-lagged effect terms refer to the discrete-time 
parameters. From these parameters, the time interval at 
which dynamic processes reach their peak effects and 
their maximum and minimum discrete-time coefficient 
time intervals were examined. Time-varying factors are 
statistically accounted for based on the stochastic ele-
ment of our model (i.e., diffusion matrix) [16]. Time-
invariant differences (i.e., age, gender) were accounted 
for through a random intercept [30, 31].

For interpreting the results, the parameter’s posterior 
mean (M) in relation to its posterior standard deviation 
(SD) and posterior 95% Bayesian credibility intervals 
(BCI) were examined. Meaningful results are inter-
preted when zero does not fall within the lower (2.5%) 
or upper (97.5%) limits of the BCI parameter. Evidence 
of continuous-time temporal relationship is indi-
cated by meaningful auto- or cross-effect relationships 
between PA levels and ST. Finally, evidence of tempo-
ral specificity is indicated by the timeframe at which 
the autoregressive or the cross-lagged effects between 
PA levels and ST reach their peak effects. Dynamic pro-
cesses were analysed as a function of the continuous 
variable of time with activity levels aggregated at the 
day level.
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Results
A total of 98 children met the minimum wear-time cri-
teria with an average of 772  min per day (SD = 66.65, 
range 623.36–937.91) and 46% presented 7 days of valid 
accelerometer data. Boys represented 69.4% of the sam-
ple and the average age was 4.5 ± 0.7  years. The chil-
dren engaged in an average 303.18 ± 49.09  min of LPA, 
108.72 ± 40.29 min of MVPA, and 360 ± 72.59 min of ST 
per day.

The Bayesian estimation required approximately 20 
RAM usage and 15.8 h of runtime for the LPA, MVPA, 
and ST model on an Intel i9-10900 T (4.60 GHz Turbo) 
CPU of a 64-bit Windows OS, with 64  GB RAM. All 
parameters had a minimum of 2270.19 effective samples 
and a Rhat ( ̂R ) of 1.0, indicating adequate model conver-
gence and precision. Based on the prediction model by 
Hecht and Zitzmann [24, 32] using N = 98, T = 7 (total 
number of time points), and standardized peak effect 

set to 0.01 (small effect), our post hoc analysis suggests 
we had a sufficient sample size to reliably estimate the 
continuous-time cross-lagged dynamics between LPA, 
MVPA, and ST (estimated “power” for standardized peak 
cross-lagged effect = 1.00).

Table 1 displays the posterior population means, stand-
ard deviations, and 95% Bayesian credibility intervals 
for the  T0 mean parameters, continuous-time inter-
cept (i.e., b), and  T0 variance between LPA, MVPA, and 
ST. The  T0 mean indicates the initial state (i.e., start-
ing point) estimate for the outcomes. It shows to what 
extent the participants’ initial states tend to be higher 
or lower than their later states [16, 17]. A negative esti-
mate indicates that the initial process was lower than 
future states, whereas a positive estimate indicates that 
the initial state was higher. For LPA, MVPA, and ST, no 
meaningful increase or decrease was observed in the 
overall level over time, with the 95% BCI encompassing 

Table 1 Means of estimated population distributions of the relationship between LPA, MVPA, and ST

Continuous-time intercept = b coefficient; Est. = mean of the chain; BCI = Bayesian credibility interval; Rhat ( ̂R) = potential scale reduction factor;  Neff = effective sample 
size; LPA = light physical activity; MVPA = moderate-vigorous physical activity; ST = stationary time

Parameter BCI

Est SD [2.5%, 97.5%] Rhat Neff

T0 mean LPA 0.08 0.1 − 0.12 0.27 1 56,627.31

MVPA 0.16 0.11 − 0.05 0.38 1 50,793.65

ST − 0.18 0.1 − 0.37 0.02 1 50,109.75

Continuous-time intercept LPA − 0.04 0.25 − 0.6 0.42 1 14,581.17

MVPA − 0.2 0.49 − 1.31 0.73 1 20,603.15

ST 0.1 0.28 − 0.39 0.73 1 14,621.88

T0 variance LPA 0.98 0.07 0.85 1.13 1 61,489.69

MVPA 1.07 0.08 0.93 1.24 1 53,878.21

ST 0.98 0.07 0.85 1.13 1 55,909.85

Auto-effects parameters LPA − 3.13 2 − 9.04 − 1.24 1 4717.66

MVPA − 6.11 2.79 − 12.23 − 1.95 1 8155.83

ST − 3.41 1.96 − 9.1 − 1.54 1 5405.83

Cross-effects parameters LPA_MVPA − 0.02 0.82 − 1.57 1.68 1 2270.19

LPA_ST − 0.68 0.68 − 2.1 0.64 1 4439.61

MVPA_LPA 0.39 0.86 − 1.38 2.06 1 25,240.28

MVPA_ST 0.12 0.9 − 1.73 1.82 1 11,317.45

ST_LPA − 0.47 0.66 − 1.88 0.79 1 23,068.58

ST_MVPA − 0.29 0.84 − 1.99 1.34 1 29,190.89

Diffusion parameters LPA 1.96 0.53 1.39 3.45 1 4370.99

MVPA 2.62 0.61 1.62 3.84 1 8328.92

ST 1.92 0.51 1.3 3.32 1 5415.59

MVPA_LPA 0.15 0.09 − 0.02 0.32 1 8912.24

ST_LPA − 0.01 0.09 − 0.19 0.17 1 4292.36

ST_MVPA − 0.32 0.1 − 0.56 − 0.15 1 11,144.99

Between-subject MVPA_LPA 0.25 0.38 − 0.57 0.84 1 9339

ST_LPA − 0.37 0.35 − 0.87 0.45 1 39,710

ST_MVPA − 0.51 0.29 − 0.89 0.23 1 39,676
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0 (LPA, M = 0.08, SD = 0.1, 95% BCI [−  0.12, 0.27]; 
MVPA, M = 0.16, SD = 0.11, 95% BCI [−  0.05, 0.38]; ST, 
M = − 0.18, SD = 0.1, 95% BCI [− 0.37, 0.02]). This means 
that LPA, MVPA, and ST fluctuated around a stationary, 
average level, during the observation period (i.e., 7 days). 
The continuous-time intercept represents the average 
process means for each outcome studied. Because they 
were grand-mean centered and standardized, they are 
not relevant for interpretation. The  T0 variance, which 
refers to the asymptotic within-person covariance, indi-
cated that all processes studied have similar variation 
over time (LPA, M = 0.98, SD = 0.07, 95% BCI [0.85, 1.13]; 
MVPA, M = 1.07, SD = 0.08, 95% BCI [0.93, 1.24]; ST, 
M = 0.98, SD = 0.07, 95% BCI [0.85, 1.13]).

The direct instantaneous (∆t → 0) temporal relation-
ship a variable has with its own rate of change (i.e., 
auto-effects) and between two distinct variables (i.e., 
cross-effect) are shown in Table 1. These are called drift 
parameters and both the auto- and cross-effects are of 
particular interest in this study. For the auto-effects, the 
closer the estimates are to zero, the longer the changes 
persisted over time [16, 17]. A negative estimate reveals 
a diminishing auto-effect over time (returning to base-
line) [16, 17]. On the contrary, a positive estimate rep-
resents an explosive process (distancing away from 
the baseline over time). As shown in Table 1 and Fig. 1, 
the auto-effects for LPA (M = −  3.13, SD = 2, 95% BCI 
[−  9.04, −  1.24]), MVPA (M = −  6.11, SD = 2.79, 95% 
BCI [−  12.23, −  1.95]), and ST (M = −  3.41, SD = 1.96, 
95% BCI [−  9.1, −  1.54]) demonstrated some degree of 
persistence, with all the auto-effects parameters exclud-
ing zero. LPA, MVPA, and ST were predictors of them-
selves at a later point in time. For the cross-effects, a 
negative estimate indicates that an increase in the level of 
one process predicts a decrease in the level of the other 
process. A positive cross-effect, in contrast, indicates 
that an increase in the level of one process predicts an 
increase in the other process [16, 17]. As demonstrated 
in Table 1 and Fig. 2, the cross-effect parameters reveal 
that increases in the levels of LPA, MVPA, and ST do not 
predict any subsequent change in the levels of the other 
constructs over time.

The diffusion parameters allow further interpreta-
tion of the temporal relationship between the processes 
(see Table 1). These parameters account for fluctuations 
in dynamic processes of interest over time that can-
not be accounted by the deterministic model elements 
(i.e.,  T0 mean, drift matrix parameters). The on-diag-
onal elements of the diffusion matrix are variances that 
quantify the extent to which the variables in a dynamic 
system are influenced by unmodelled exogenous inputs 
[16, 17]. The findings indicate that all latent processes 
(i.e., LPA, MVPA, ST) were influenced by random (i.e., 

unpredictable) fluctuations over time. More specifi-
cally, LPA and ST processes have similar levels of varia-
tion from exogenous inputs (LPA, M = 1.96, SD = 0.53, 
95% BCI [1.39, 3.45]; ST, M = 1.92, SD = 0.51, 95% BCI 
[1.3, 3.32]). As for MVPA, on the contrary, there is rela-
tively more variation in this behaviour over time due to 
unmodeled factors (M = 2.62, SD = 0.61, 95% BCI [1.62, 
3.84]). The off-diagonal elements of the diffusion matrix 
represent covariances that quantify the extent to which 
the stochastic variation between two latent processes 
share common causes [16, 17]. The findings show that 
there is meaningful negative covariation between ST and 
MVPA (M = − 0.32, SD = 0.1, 95% BCI [− 0.56, − 0.15]). 
Furthermore, the 95% BCI for LPA and both MVPA 
and ST included zero, indicating that variation in LPA 
is largely independent from the exogenous inputs that 
influence MVPA (M = 0.15, SD = 0.09, 95% BCI [−  0.02, 
0.32]) and ST (M = −  0.01, SD = 0.09, 95% BCI [−  0.19, 
0.17]) latent processes. Thus, other factors may deter-
mine LPA in this sample.

As illustrated in Fig.  1, the autoregressive effects (i.e., 
the discrete-time parameters presented in the plots) for 
children’s LPA, MVPA and ST appear to be predictive 
of their later behaviours until about 0.5  days later. For 
example, after accounting for all other dynamic rela-
tionships included in the multivariate dynamic model, 
a child’s MVPA at one moment in time was predictive 
of their subsequent MVPA until about 12 h hence. This 
pattern was also consistent across LPA and ST. Further, 
the autoregressive coefficients are positive (see Fig.  1), 
demonstrating persistence in processes. In contrast, a 
negative autoregressive effect illustrates an oscillating 
compensatory process [14], which was not detected in 
this study. Further, although no meaningful discrete-time 
cross-lagged effects were observed over time, Fig. 2 sug-
gests the temporal dependencies among the behaviours 
were largest at 0.25  days between measurement occa-
sions after accounting for all other dynamic relationships 
included in the model.

The between-person relationships among LPA, MVPA, 
and ST are presented in Table 1. No meaningful relation-
ship was found between the behaviours suggesting that 
the constructs were independent from each other.

Discussion
The primary aim of this study was to examine the pres-
ence of continuous-time multivariate relationships 
between PA levels and ST in preschool-aged children. 
Based on the ActivityStat hypothesis, compensatory 
mechanisms would be indicated by meaningful nega-
tive within-behavior relationships for LPA, MVPA or ST 
[5]. As for the cross-behavioral relationships, ActivityS-
tat is operating when meaningful negative associations 
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are observed between MVPA and LPA, and meaningful 
positive associations are observed between LPA and ST 
or between MVPA and ST [5]. Findings for the primary 
research question show that children with high levels of 
LPA, MVPA, and ST on a given day, tended to engage 
in more levels of LPA, MVPA, and ST the following day, 
respectively. However, the cross-effects parameters indi-
cated no relationship among these behaviours. Thus, this 
study does not support the ActivityStat in preschool-
aged children.

Absent of compensation, some studies have demon-
strated similar patterns to what was found in the present 

study where an increase in PA in a specific context stimu-
lated children between 8 and 10  years of age to engage 
in more PA at another time [33–35]. Similarly, Nigg et al. 
[11] report that youth between 6 and 17 years of age do 
not compensate when MVPA increases. In contrast, a 
systematic review of 12 studies in preschool-aged chil-
dren (3–6 years old) found evidence of compensation in 
42% of the cases [10], but the studies were not designed 
explicitly to test for the ActivityStat hypothesis. This 
fact may have impacted why compensation was not 
observed [36]. Regardless, investigation of compensa-
tory mechanisms in young children is still understudied 

Fig. 1 Standardized discrete-time autoregressive effects. LPA = light physical activity; MVPA = moderate-vigorous physical activity; ST = stationary 
time
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and all studies supporting and refuting the ActivityStat 
hypothesis in this population have employed traditional 
multilevel models [8, 11, 37], disregarding the temporal 
multivariate dependence among LPA, MVPA, and ST. 
Therefore, more studies designed to test the hypothesis 
are needed in the population of preschool-aged children. 
Additionally, the use of dynamic modelling methods is 
critical for understanding such complex systems in future 
research.

Further interpretation of the temporal relationship 
between the processes studied show that LPA, MVPA, 
and ST appear to be influenced by other factors not 
included in the analysis. For instance, sleep may influence 

PA and SB in preschool-aged children [1]. This behaviour 
should be incorporated as a component of the move-
ment behaviour continuum (i.e., sleep, SB, PA) [23]. Poor 
sleep may increase sedentary-related playtime activi-
ties in children while decreasing their MVPA levels [38]. 
In contrast, variability in LPA appears to have unique 
causes independent of those that explain variability in 
MVPA and ST. For example, young children who have 
siblings may still engage in LPA regardless of restrictions 
for using outdoor spaces [39]. Due to the complexity of 
the factors that impact movement-related behaviours, 
investigating the ActivityStat is a challenge. Future stud-
ies should focus on compensatory mechanisms in young 

Fig. 2 Standardized discrete-time cross-lagged effects. LPA = light physical activity; MVPA = moderate-vigorous physical activity; ST = stationary time
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children examining simultaneously movement-related 
behaviours objectively and parents’ perceptions of activ-
ity compensation.

The secondary aim of this study was to explore the tem-
poral specificity underlying the multivariate relationships 
between PA levels and ST. All behaviour autoregressive 
components were predictive of themselves until about 
12 h later. This implies that preschool-aged children who 
move more at a specific time point subsequently engage 
in more PA (i.e., LPA and MVPA) until about 12 h later. 
The same pattern is observed for ST. As for the cross-
lagged effects, a relationship among LPA, MVPA, and ST 
appeared to occur about 0.25 days later. For instance, pre-
school-aged children who engage in MVPA at a specific 
time point may engage in more LPA until about 0.25 days 
later. However, the cross-behavioural relationships 
among the latent processes were not meaningful and 
were mostly in the opposite direction of what would have 
been anticipated by the ActivityStat hypothesis [5]. Thus, 
no compensation effects were observed at days greater 
than or equal to one. According to Gomersall et  al. [5], 
the timeframe for compensation is unlikely to occur 
within a short timescale (i.e., within- and between-days). 
However, cross-sectional studies testing the hypothesis in 
children demonstrated evidence of behavioural compen-
sation within- and between-days refuting the argument 
for longer-term observations [8, 13, 37]. These studies 
focused on short-time relationships among PA levels 
and SB and employed traditional longitudinal analyses. 
Recent systematic reviews highlight the importance of 
examining the timeframe for compensation as it impacts 
conclusions of whether compensation occurs [10, 36]. 
Therefore, because the timeframe for behavioural com-
pensation is unknown, future studies should consider a 
wider range of timescales, as effects can be aggregated 
to longer time intervals if required. This potentially has 
practical importance for designing PA programs impact-
ing on the design, frequency of measurements, and dura-
tion of the intervention [5, 10, 36].

This study has some limitations that should be con-
sidered when interpreting the results. First, because 
CT-SEM is computationally intensive (it needs a pro-
cessor with as many cores as chains, i.e., 4 cores), the 
dynamic measurement parameters were not included 
in the final model. Though, this parameter accounts 
for measurement error in each individual behaviour, 
it would require a few months for the model to run. 
Instead, a final model without this parameter still 
showed adequate model convergence and precision. 
Additionally, because CT-SEM can accommodate two 
to three dynamic processes at most, the examination of 
a complex and multivariate system is computationally 
burdensome. Therefore, the inclusion of sleep in this 

study was not feasible. Secondly, the non-experimental 
design has low internal validity and constrains our abil-
ity to make causal claims. Because habitual activity pat-
terns may show temporal variations in PA and ST, these 
can be misinterpreted as compensatory mechanisms. 
Additionally, the examination of behavioral compensa-
tion in preschool-aged children may be more challeng-
ing due to the characteristics of the population. For this 
age-group, it is difficult to conclude whether variations 
in PA are due to biological mechanisms, or a response 
influenced by external factors (e.g., parents, preschool 
or daycare schedule). Thirdly, SB was represented as 
ST because the ActiGraph wGT3X-BT detects motion 
and is limited in reliably detecting the posture compo-
nent of SB [17, 18]. Lastly, because compensation could 
occur via energy expenditure mechanisms that were 
not necessarily reflected in behavioural adaptations 
[4–6], the lack of energy expenditure measures in this 
study limited the ability to comprehensively test the 
hypothesis. Nevertheless, a number of strengths should 
be highlighted: the use of the novel insights provided by 
Bayesian CT-SEM to examine the ActivityStat hypoth-
esis, the continuous analysis of processes over time 
without restricting the timeframe for potential com-
pensation, employing device-assessed measurement of 
PA and ST over several days, and the examination of 
this hypothesis in preschool-aged children.

Conclusion
This is the first study to investigate the ActivityStat 
hypothesis using Bayesian CT-SEM in preschool-aged 
children. Though we found positive continuous-time 
relationships within LPA, MVPA, and ST, no relation-
ships were observed between the behaviours. Overall, 
the findings do not support the ActivityStat hypothesis 
in preschool-aged children when simultaneously tak-
ing into account all dynamic relationships among LPA, 
MVPA and ST. One potential explanation is that our par-
ticipants did not exceed their individual activity set-point 
as a result of engaging in PA. Therefore, compensatory 
behaviours were not initiated [5]. Future research should 
employ dynamic modelling analyses in experimental 
designs and attempt to measure both energy expenditure 
and movement behaviours. Absent of evidence for com-
pensation effects, PA programs involving young children 
should continue to follow current guidelines for promot-
ing health movement behaviour.
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