
Farrahi and Rostami  
Journal of Activity, Sedentary and Sleep Behaviors             (2024) 3:5  
https://doi.org/10.1186/s44167-024-00045-9

REVIEW

Machine learning in physical activity, 
sedentary, and sleep behavior research
Vahid Farrahi1* and Mehrdad Rostami2 

Abstract 

The nature of human movement and non-movement behaviors is complex and multifaceted, making their study 
complicated and challenging. Thanks to the availability of wearable activity monitors, we can now monitor the full 
spectrum of physical activity, sedentary, and sleep behaviors better than ever before—whether the subjects are elite 
athletes, children, adults, or individuals with pre-existing medical conditions. The increasing volume of generated 
data, combined with the inherent complexities of human movement and non-movement behaviors, necessitates 
the development of new data analysis methods for the research of physical activity, sedentary, and sleep behaviors. 
The characteristics of machine learning (ML) methods, including their ability to deal with complicated data, make 
them suitable for such analysis and thus can be an alternative tool to deal with data of this nature. ML can poten-
tially be an excellent tool for solving many traditional problems related to the research of physical activity, sedentary, 
and sleep behaviors such as activity recognition, posture detection, profile analysis, and correlates research. How-
ever, despite this potential, ML has not yet been widely utilized for analyzing and studying these behaviors. In this 
review, we aim to introduce experts in physical activity, sedentary behavior, and sleep research—individuals who may 
possess limited familiarity with ML—to the potential applications of these techniques for analyzing their data. We 
begin by explaining the underlying principles of the ML modeling pipeline, highlighting the challenges and issues 
that need to be considered when applying ML. We then present the types of ML: supervised and unsupervised learn-
ing, and introduce a few ML algorithms frequently used in supervised and unsupervised learning. Finally, we high-
light three research areas where ML methodologies have already been used in physical activity, sedentary behavior, 
and sleep behavior research, emphasizing their successes and challenges. This paper serves as a resource for ML 
in physical activity, sedentary, and sleep behavior research, offering guidance and resources to facilitate its utilization.

Keywords Wearables, Supervised learning, Unsupervised learning, Classification, Clustering, Machine learning 
modelling, Predictive modelling

Introduction
Our daily lives constitute three main components—phys-
ical activity, sedentary, and sleep behaviors—that are 
interconnected with each other [1] and codependently 

related to various aspects of our health [2, 3]. In recent 
years, there has been a growing use of wearable devices 
to measure these behaviors, adding to the complexity of 
studying and understanding them. Nowadays, wearable 
activity monitors have the capacity to continuously cap-
ture the entire spectrum of movement and non-move-
ment behaviors over extended periods [2], lasting even 
up to several weeks [4]. However, making sense of such 
data is challenging and often requires the use of advanced 
analytical tools tailored to handle their complex nature 
[2, 3].
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Physical activity, sedentary, and sleep behavior data 
often fail to conform to the assumptions of classical 
statistical methods. The complex interactions and co-
dependencies among these movement and non-move-
ment behaviors across the 24-h day make it unclear what 
type of functional relationship one should use to describe 
such data mathematically [3, 5]. Additionally, numer-
ous other complex issues, such as correlates and deter-
minants [6], tailored recommendations [1], and activity 
recognition from activity monitors [7, 8], require more 
innovative analytical approaches. Nevertheless, human 
behaviorists and epidemiologists who are interested in 
monitoring these behaviors and assessing their impact on 
health and diseases have traditionally relied on classical 
statistical methods, such as linear regression analysis, to 
manage and analyze these complex datasets [2, 3, 9].

Owing to their underlying mathematical principles, 
machine learning (ML) methods can handle complex and 
high-dimensional datasets [10, 11]. In essence, ML and 
statistics share many similarities, but they approach data 
in different ways [12, 13]. Statistics is typically used to 
understand and interpret data. It often deals with smaller, 
more controlled datasets and focuses on understanding 
relationships between variables, testing hypotheses, and 
making inferences about a population based on a sam-
ple. ML, on the other hand, is more like a data-driven 
problem-solving approach [12, 13]. It involves teaching 
machines to learn from data without explicitly program-
ming them. This gives ML algorithms the capability to 
improve their performance over time as they are exposed 
to more data. In a more formal definition, ML funda-
mentally represents a subfield of artificial intelligence 
and incorporates a wide array of methodologies aimed at 
identifying and learning patterns from data. Unlike tra-
ditional statistical approaches that focus on hypothesis 
testing and parameter estimation, ML methods are more 
concerned with predictive modeling and pattern recogni-
tion [11, 14].

However, despite the recent trend towards employing 
more complex statistical methods [15–17], ML has not 
yet gained widespread adoption for analyzing such data-
sets [3]. This may be partly because researchers inter-
ested in analyzing and studying human movement and 
non-movement behaviors often lack prior experience in 
ML, which can make approaching this subject area over-
whelming and subsequently hinder its applications. Such 
approaches offer a valuable set of data modelling tech-
niques that complement those found in classical statistics 
[10, 18], making them well-suited for analyzing and stud-
ying physical activity, sedentary, and sleep behavior data.

In the physical activity, sedentary, and sleep behav-
ior context, ML can help be useful in a number of ways, 
particularly after the recent shift towards assessment 

of these behaviors with wearable devices. Whether it 
involves identifying patterns of physical activity in large 
populations [16, 19], classifying individuals based on 
their sedentary behavior patterns [20], or understanding 
the interrelationships between sleep duration, variability, 
or quality [21], ML stands as a powerful tool for exploring 
and deriving insights from diverse and voluminous data-
sets. Yet, while the application of ML does not require 
extensive expertise in computer science or mathematics, 
employing it without a proper understanding can lead to 
biased models and findings that may misrepresent reality. 
Some argue that even practicing ML can be as straight-
forward as performing linear regression analysis [22]—a 
method commonly used by many researchers working 
with data related to physical activity, sedentary, and sleep 
behaviors. This realization can be enlightening for those 
who perceive ML solely as complex analytical methods.

The aim of this study is to provide an overview of ML 
modeling techniques, which are typically discussed in 
technical journals and books. To assist researchers work-
ing with data on physical activity, sedentary, and sleep 
behaviors, we offer a step-by-step guide outlining the 
typical steps taken when performing ML modeling. Our 
guide begins by outlining the general steps involved 
in ML modeling. We then introduce both supervised 
and unsupervised learning, along with several com-
monly used algorithms for these two types of ML. This 
is followed by a brief overview of the literature covering 
three research domains where ML has been success-
fully applied in physical activity, sedentary, sleep behav-
ior research. We conclude with a discussion on the more 
practical aspects of ML, including tools for executing ML 
modeling and the limitations of ML techniques.

Machine learning modeling
ML can handle a vast array of tasks, such as classifying 
observations into predefined categories, clustering data 
into groups with shared characteristics, and regressing 
outcomes against multiple factors to understand their 
individual contributions [10, 11]. These tasks are typically 
undertaken using one of two primary ML approaches: 
supervised learning or unsupervised learning [10, 23]. 
The ML modeling process for both types is iterative, 
consisting of a series of sequential steps, often organized 
into what is known as an ML pipeline [10, 24]. To follow 
this structure, we first examine the four essential stages 
of the ML modeling process: (1) data exploration, (2) fea-
ture engineering, (3) model development, and (4) model 
validation and evaluation. After outlining these steps, we 
introduce supervised and unsupervised learning. Figure 1 
provides a bird’s-eye view of the general steps involved in 
ML modeling.
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Data exploration
ML modelling typically begins with the exploration of 
data [24]. In this phase, it is common to investigate vari-
ous aspects of the dataset, such as its size, structure, 
quantity, and quality. Often, data visualizations are uti-
lized to discern trends, identify outliers, and develop 
an understanding of the data’s inherent characteris-
tics. These initial steps are crucial for acquiring a better 
domain knowledge, which, in turn, enables ML prac-
titioners to make informed decisions at every stage of 
designing and applying ML models to the problems at 
hand. Domain knowledge is important for feature engi-
neering and can even be incorporated in ML algorithms 
to improve the transparency of ML, aligning more closely 
with how experts in the field operate [25].

Feature engineering
Features are the attributes or characteristics of the data 
that are needed for performing any ML task (supervised 
or unsupervised) [26, 27]. Feature engineering is the 
link between raw data with no apparent meaningful pat-
tern and successful ML model development, and there-
fore can have a substantial impact on the ML modelling 
[26, 28]. Typically, this process involves a considerable 
amount of data cleaning, preprocessing, transformation, 
and visualization, making it the most labor-intensive step 
in ML modeling—often surpassing the time required 
to fit algorithms to the data [29]. Feature engineering 

generally encompasses two key phases: feature extraction 
and feature selection or reduction, as illustrated in Fig. 1.

Feature extraction refers to the process of converting 
raw data into meaningful features, or simply measuring 
different characteristics and aspects of raw data, whereas 
feature selection and reduction is the process of choos-
ing, transforming, and shaping discriminative features 
for ML modelling [26, 28, 29]. More precisely, feature 
selection and reduction involve the careful curation of a 
subset of features from an initially expansive list of possi-
bilities created during feature extraction. During feature 
engineering, the primary goal is to retain only the most 
pertinent and informative attributes while disregarding 
redundant or less influential ones [26, 28, 29].

In the context of physical activity, sedentary, and sleep 
behaviors, feature engineering remains a fundamental 
and crucial step in characterizing and analyzing such 
data using ML methodologies; whether ML is utilized for 
activity recognition from wearable data [28] or for study-
ing behavior patterns within individuals or populations 
[20, 30]. The features represent the quantifiable attrib-
utes that hold essential information, for example about 
an individual’s movement patterns, energy expenditure, 
and lifestyle habits. To provide an example, when deal-
ing with physical activity data, these features could be a 
wide array of parameters such as step counts, heart rate 
variability, duration of physical activity, intensity levels, 
and even contextual information like location and time 
of day. On the other hand, when focusing on sedentary 

Fig. 1 The recursive and sequential process of machine learning modelling pipeline



Page 4 of 17Farrahi and Rostami  Journal of Activity, Sedentary and Sleep Behaviors             (2024) 3:5 

behaviors, important features might include metrics 
related to sitting time, screen time, posture, and breaks 
from sedentary activities.

Model development
The iterative process of developing and validating ML 
models necessitates careful consideration in the choice of 
algorithms, which depends on the types of data available 
and their underlying assumptions. Typically, the best-
performing ML algorithm is identified experimentally in 
an iterative manner [28, 31, 32]. Take, for instance, the 
prediction of activity types and intensities from wearable 
devices, which could logically involve analyzing sequen-
tial data due to the inherent sequential nature of human 
movement and non-movement behaviors. Given this 
assumption, when tackling an activity prediction prob-
lem with ML, prioritizing algorithms capable of process-
ing sequential information may be more reasonable than 
potentially other alternatives [33].

Model validation and evaluation
Once the model is fitted, the next step is to validate and 
evaluate the model. This essential phase involves a series 
of rigorous tests and assessments to ensure the model’s 
reliability and performance meet the desired standards. It 
is important to note that the impact of prior steps in the 
ML modeling pipeline, including feature engineering, is 

assessed and evaluated during the model validation and 
evaluation [10, 24].

Supervised methods
Like traditional statistical methods (e.g., generalized lin-
ear models), supervised learning methods aim to identify 
the relationship between an outcome and a set of explan-
atory variables. The primary objective of supervised 
learning is to acquire a mapping from input data to cor-
responding outputs so that the model can make accurate 
predictions on new, unseen data [23]. Supervised learn-
ing can be done both for regression (continuous) and 
classification (categorical) tasks. However, unlike pre-
defined model structures in traditional statistics, super-
vised learning leverages the data as a starting point [18, 
23]. The ML machinery learns the mapping (predictive 
model) between a set of features and either a continuous 
target variable (regression) or a categorical target variable 
(classification) based on the patterns found in the data.

Figure  2 illustrates the general steps involved in the 
process of supervised learning for a classification task. 
For supervised learning, the machine needs to know 
the target variable for each observation. As illustrated 
in Fig.  2, the process of ML involves multiple intercon-
nected steps, all working together to identify the most 
optimal model. There are a variety of supervised algo-
rithms, each founded on different mathematical and 

Fig. 2 The process of supervised machine learning modelling. Following the feature engineering stage (a), once an appropriate feature set 
is determined, the next phase involves dividing the data into training and testing datasets (b). The training dataset is employed to construct 
the predictive model, while the testing dataset, which is not involved in the model building process, is reserved for assessing the expected 
predictive performance. In statistical terms, this process is analogous to drawing inferences about a population based on a finite and random 
sample. Given that the correct values for the target variables are known, it is possible to objectively verify the model’s performance (c)
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statistical principles [23]. Below, we have briefly intro-
duced decision trees, random forests, and support vec-
tor machines (SVM) that are widely used algorithms for 
supervised learning. These algorithms are illustrated in 
detail in Fig. 3.

Decision trees
Decision trees are one of the popular ML methods 
employed for both classification and regression tasks 
[34]. Decision trees use a tree structure to represent the 
data, with each leaf node corresponding to a target vari-
able and internal nodes representing attributes. They 
operate by recursively dividing the data into subsets 
based on the values of input features. The simplicity and 
interpretability of decision trees make them attractive, 
especially in health research [35, 36].

In a decision tree, the path from the root to a leaf node 
provides a clear and coherent rationale for each predic-
tion. For example, physically active and inactive individu-
als can be classified by asking a series of simple yes/no 
questions (Fig.  3a). Decision trees are computationally 
inexpensive to train, evaluate and store. They can han-
dle both categorical and continuous data and are fairly 
robust to outliers [35, 36]. However, they are often prone 
to overfitting (small changes in the training data set may 
lead to significantly different trees) and their simplicity 
may be a trade-off for relatively poor predictive perfor-
mance compared to other ML algorithms [35, 36].

Random forests
Random forests are an ensemble learning method that 
builds upon the decision tree algorithm [37]. Each 

decision tree is built through bagging, utilizing random 
subsets of the data and considering a random subset of 
features at each split. This ensemble technique may out-
perform the predictive ability of single decision trees, 
making it well-suited for a variety of supervised learning 
tasks [37, 38]. Figure 3b depicts the schematic of a ran-
dom forest model built for classification of active and 
inactive individuals.

By combining the predictions of multiple trees, ran-
dom forests reduce the risk of overfitting and improve 
the overall model’s generalization ability [37, 38]. How-
ever, if the dataset contains a lot of irrelevant features or 
noisy data, the random forest may include these data in 
the trees, potentially reducing its predictive performance. 
Random forests tend to be biased toward the majority 
class in imbalanced datasets [37].

Support vector machine (SVM)
SVM is a supervised learning algorithm primarily 
employed for classification tasks [39]. The fundamental 
principle of SVM is to construct decision boundaries that 
effectively separate samples into predefined class cat-
egories. This decision boundary, also referred to as the 
hyperplane, is oriented in a manner that maximizes the 
distance from the closest data points of each class. SVM 
identifies these closest points, known as support vectors, 
which define the decision boundary and give the large 
marginal separation between the classes [39, 40]. Fig-
ure 3c illustrates the schematic of a SVM model created 
for binary classification problem.

SVM are particularly effective with high-dimensional 
data, which is often the case in analyzing physical activity, 

Fig. 3 Three commonly employed machine learning algorithms with hypothetical data for predicting active and inactive individuals (a) A decision 
tree model comprising two levels. In decision trees, the selection of the appropriate attribute for each node at every level, the correct cut-off point, 
and the identification of relevant categories is typically accomplished using metrics such as Information Gain and Gini Index. b Random forest 
model comprised of three decision trees. c SVM model for a binary classification problem with two features
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sedentary, and sleep behaviors. One of the key strengths 
of SVM is its use of kernel functions, which enable the 
algorithm to handle non-linear data by mapping it into 
a higher-dimensional space where a linear separation is 
possible [39, 40]. However, SVMs are known for their 
intensive memory usage, which can be a drawback when 
working with very large datasets. While SVM inherently 
addresses binary classification, multi-class problems are 
common in behavior analysis. To extend SVM to these 
problems, methods such as one-vs-all or one-vs-one are 
implemented, allowing the binary classifier to make deci-
sions across multiple classes [39, 40].

Supervised feature selection
When the target variable is known, supervised feature 
selection methods can be employed. As demonstrated in 
Fig. 4a–c, these methods fall into three categories: filter, 
wrapper, and embedded methods [41, 42]. Filter methods 
assess the relevance and importance of all features based 
on predefined information-theoretic criteria. Relevance 
scores can be determined using various metrics such as 
distance metrics (e.g., Euclidean), correlation, mutual 
information, or consistency metrics, among others that 
have been proposed [43].

Wrapper methods employ a learning algorithm to 
evaluate the effectiveness of different subsets of candi-
date features [44]. Each subset is used to train a model, 
whose performance is then measured using a validation 
set or through cross-validation. Although wrapper meth-
ods are generally thought to yield better feature subsets 

compared to filter methods, they tend to be more prone 
to overfitting due to their dependence on the learning 
algorithm [44].

The embedded approach integrates the feature selec-
tion problem within the learning algorithm itself, with 
variable selection occurring during the model training 
process [41, 42]. This approach creates a direct interac-
tion between feature selection and the learning process, 
unlike filter and wrapper methods. Decision trees and 
random forests are common examples of algorithms that 
have embedded feature selection mechanisms.

Validation techniques
Validation techniques in supervised learning are methods 
used to evaluate the performance of a model on a sepa-
rate dataset not used in training, to ensure it generalizes 
well to new, unseen data. Here, we discuss three valida-
tion techniques for supervised learning.

Data split
The data split, also known as the holdout method, divides 
the data into two subsets: a training set and a test set [45]. 
Initially, the model is trained on the training data and 
then applied to the test set to assess its predictive abil-
ity. In this approach, the test data serves as ‘unseen’ data, 
even though it originates from the same source. Data 
split validation may often include an additional subset 
called the validation set. The validation set is typically 
used to fine-tune hyperparameters in ML algorithm, 
before applying the model on the test set.

Fig. 4 Three types of feature selection methods. a Filter-based feature selection employs an objective function to evaluate the relevance 
of a feature subset during the generation of feature lists. b Wrapper-based feature selection assesses the impact of a feature subset using 
the learning algorithm directly. c Embedded feature selection integrates an internal function to identify the most suitable feature subset 
for a prediction task



Page 7 of 17Farrahi and Rostami  Journal of Activity, Sedentary and Sleep Behaviors             (2024) 3:5  

Data split technique should be used carefully when 
employed for ML modelling [45]. When dealing with 
a small dataset, the practice of splitting the data can be 
problematic as this will reduce the number of instances 
available for the algorithm to learn from. Splitting the 
data is also more vulnerable to outliers. Unless the data-
set is sufficiently large, data split validation may result in 
significant variations in results across different splits of 
the data. In many cases, data splitting may not be suffi-
cient to provide a good estimate of the generalizable per-
formance of ML models.

Cross validation
Cross-validation is another widely employed approach 
to assess the performance of supervised models, espe-
cially when the available samples are limited in size [46]. 
Among the techniques of cross-validation and its vari-
ations, K-fold cross-validation is most frequently used 
[46]. In this method, the dataset is randomly divided into 
k equal-sized parts, where k is an arbitrarily chosen num-
ber. The model undergoes training k times, each time 
using k − 1 folds as the training set and the remaining 
fold as the validation set. This approach maximizes the 
amount of data used for training while ensuring that all 
data serves as part of the test set at least once, providing 
a more accurate estimate of performance. Leave-one-out 
is one variation, where the model is evaluated by leaving 
out just one data point from the dataset for testing, while 
the rest of the data points are used for training.

Typically, the results from each run of cross-validation 
are averaged to obtain a comprehensive cross-validation 
score [46]. However, examining the scores from each fold 
individually can be informative; significant discrepancies 
between them may signal issues such as outliers or class 
imbalances [47]. When results from different folds show 
considerable variability, it can be challenging to inter-
pret the overall model performance. This high variability 
can result from the random sampling of data points into 
each fold. Nonetheless, cross-validation is a more robust 
method of model validation and should be preferred over 
a simple data split whenever possible, despite being com-
putationally more demanding than data split validation.

External validation
External validation represents the most robust approach 
for gaining a genuine understanding of ML generaliz-
ability [45, 48]. This involves employing a different data 
set than the one used for model training and testing. This 
concept is exemplified in studies that employ ML models 
to identify subgroups with varying activity behavior pat-
terns based on a wide range of individual, demographic, 
psychological, behavioral, environmental, and physical 
factors for intervention allocation and design [49–51]. 

While these models have proven successful in identifying 
target subgroups, it remains uncertain whether the same 
subgroups can be identified in a different population 
with potentially distinct cultural and country-specific 
influences on active behaviors. Validation on an external 
population can determine whether such ML models can 
serve as screening tools beyond the population they were 
originally trained and validated on.

Performance metrics
In supervised learning, the model’s performance can be 
objectively measured since the class variables are known 
for the data used for training, validation, and testing. 
Having these labels allows for the calculation of various 
quantitative metrics, offering an objective assessment of 
the model’s performance. An essential evaluation tool in 
supervised learning is the confusion matrix, which offers 
an overview of a supervised model’s performance by 
comparing its predictions to the actual values. A confu-
sion matrix and commonly used performance metrics for 
classification tasks are illustrated in Fig. 5a.

The primary metrics used to evaluate classification 
models—accuracy, precision, and recall—can be derived 
directly from the confusion matrix [52]. Accuracy repre-
sents the most intuitive metric, showcasing the percent-
age of correctly classified observations overall. It offers a 
general overview of the model’s effectiveness but might 
not be sufficient in scenarios with imbalanced classes, 
where other metrics like precision and recall become 
vital for a deeper understanding of the model’s perfor-
mance. Precision measures how often the ML model is 
accurate when predicting the target variable, while recall 
assesses the model’s ability to identify all instances of the 
target variable.

Commonly used performance metrics for evaluat-
ing regression models include the mean absolute error 
(MAE) and root mean squared error (RMSE). MAE 
quantifies the average magnitude of errors between pre-
dicted and actual values. It provides a straightforward 
measure of how far, on average, the predictions are from 
the actual values. On the other hand, RMSE offers an 
interpretable measure in the same units as the depend-
ent variable. It considers the squared errors between pre-
dicted and actual values, which penalizes larger errors 
more than smaller ones due to the squaring operation. 
Lower RMSE values indicate better model performance. 
Other performance metrics that can be used for regres-
sion tasks are demonstrated in Fig. 5b.

Each metric reflects a different aspect of the model 
quality, and depending on the use case, ML practi-
tioner should choose to examine the most appropri-
ate one. Still, although quantitative assessment of 
performance is possible, the evaluation of supervised 
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algorithms must be approached with caution [52]. For 
instance, solely reporting the total accuracy of a clas-
sification model—which measures the percentage of 
correctly classified data points—can be misleading 
in datasets with imbalances in the target variable’s 
classes. For example, consider a classifier tasked with 
predicting mortality based on variables describing the 
duration and timing of 24-h physical activity, seden-
tary, and sleep. Such a classifier might predict ‘nega-
tive’ for all data points and achieve high accuracy, not 
due to high predictive power but because a small pro-
portion of the study sample experiences mortality. 
This demonstrates the importance of selecting appro-
priate performance metrics to properly assess the per-
formance of the ML model.

Unsupervised methods
Unsupervised learning is a type of ML where the algo-
rithm makes use of unlabeled data. This means that 
unsupervised algorithms do not have specific target 
or output variables to learn from. Instead, these algo-
rithms seek to find patterns, structure, or relationships 
in the data on their own, without any information 
guiding what is correct or incorrect [23, 53]. In gen-
eral, the primary goal of unsupervised learning is to 
discover underlying patterns or hidden structures 
in the data. This can involve tasks such as cluster-
ing, where the algorithm groups similar data points 
together, or dimensionality reduction, which reduces 
the number of features in the data while preserving 
important information [14, 23, 53].

K‑means clustering
K-means clustering is an unsupervised ML method 
designed to partition the data into a user-defined number 
(K) of disjoint clusters based on the input variables (fea-
tures) [54]. The aim is to maximize the similarity of data 
points within each cluster and minimize the similarity to 
data points in other clusters, according to the objective 
function. The K-means algorithm achieves this by initially 
selecting K centroids at random. Then, each data point is 
assigned to the nearest centroid, typically determined by 
Euclidean distance. The centroids of these clusters are 
recalculated, and the process of assignment and updat-
ing continues iteratively until the centroids stabilize or a 
user-specified maximum number of iterations is reached.

The objective function in the K-means algorithm is 
to minimize the within-cluster sum of squares (WCSS). 
The goal is to adjust the centroids to minimize the over-
all spread or variance within each cluster, resulting in the 
formation of more cohesive and distinguishable clusters. 
Mathematically, the WCSS is represented as below:

where K  is the number of the clusters, Ci is i-th cluster, 
µi is the centroid or mean of cluster of Ci , and �x − µi�

2 
indicates the squared Euclidean distance between data 
point x and centroid µi

While K-means is favored for its simplicity and efficacy, 
its dependence on the initial random placement of cen-
troids can potentially lead to inconsistent results across 
different executions [55]. Selecting the appropriate num-
ber of cluster groups is also a challenge when applying 

WCSS =
K

i=1 x∈Ci

�x − µi�
2

Fig. 5 Performance metrics for evaluation of a classification and b regression problems
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K-means. Techniques such as the elbow method and sil-
houette analysis are typically used to find the appropriate 
number of clusters and evaluate the inter-cluster separa-
tion distance [54].

Principal component analysis (PCA)
Dimensionality reduction techniques are unsupervised 
methods that aggregate dimensions while attempting to 
preserve as much of the data’s structure as possible. This 
means that observations that are ‘close’ to each other in 
the original dataset remain so in the lower-dimensional 
representation. Principal Component Analysis (PCA) is 
a widely used linear dimensionality reduction method in 
which the new uncorrelated features are weighted linear 
combinations of the original data [56]. The objective of 
PCA is to identify directions (known as principal compo-
nents) that maximize the variance of the data, capturing 
its most important features while reducing complex-
ity. PCA works by decomposing the initial features into 
orthogonal components, each being a linear combination 
of the original features [56]. These components are evalu-
ated based on the variance they capture from the original 
data, enabling the retention of only the most significant 
components and, consequently, reducing dimensionality.

The practical applications of PCA extend to various 
domains, such as visualization, noise reduction, and 
preprocessing data prior to its utilization in other ML 
algorithms [57]. However, due to the assumption of lin-
earity in the data, PCA may not effectively capture the 
variance and could often yield suboptimal results. While 
the principal components are orthogonal, ensuring their 
statistical uncorrelation, this may hinder the interpret-
able meaning for each component when compared to the 
original features [56].

Evaluations of unsupervised learning
Due to the inherent absence of explicit target variables in 
unsupervised methods, the objective evaluation of their 
outcomes becomes a challenging task [53]. Instead, eval-
uations of unsupervised methods are typically aimed at 
assessing the quality and meaningfulness of the discov-
ered patterns or structures within the data. This requires 
evaluation measures, which assess the internal consist-
ency and quality of the results.

A number of evaluation metrics exist for clustering 
methods [53, 58]. The Silhouette Coefficient, for instance, 
quantifies the similarity of an object to its own cluster in 
comparison to other clusters, providing insights into the 
distinctiveness and coherence of clusters. Similarly, the 
Davies-Bouldin Index evaluates the average similarity 
ratio of each cluster with its most similar cluster, a met-
ric for assessing the quality of cluster separation. When 
employing dimensionality reduction techniques such as 

PCA, two fundamental metrics, among others, are com-
monly considered [58]. These metrics include the recon-
struction error, which measures the resemblance of the 
reduced-dimensional representation to the original data, 
and the explained variance, which quantifies the propor-
tion of the total data variance retained in the reduced 
space [58]. Figure 6 illustrates the commonly used evalu-
ation metrics for unsupervised learning.

Challenges and considerations in machine learning 
modelling
Overfitting and underfitting
ML modeling comes with inherent challenges, among 
which underfitting and overfitting are two prevalent 
issues. Underfitting occurs when the model inadequately 
captures the underlying patterns and distribution of the 
data [59]. As a result, the model fails to learn crucial char-
acteristics, leading to poor generalization. Conversely, 
overfitting happens when a ML model learns the data too 
well, absorbing not just the fundamental patterns but also 
the noise or random fluctuations within the data [59]. 
Consequently, the model becomes excessively complex, 
finely tuned to the particular dataset it was trained on but 
lacking the ability to generalize, which diminishes its per-
formance in real-world scenarios where variations in data 
distribution are typical.

Consider, for instance, the development and validation 
of an ML model designed to estimate the number of steps 
a person takes based on data from wearable activity mon-
itors. Overfitting might cause the model to register every 
minor movement as a step, leading to noisy predictions, 
while underfitting could result in a model that overlooks 
many actual steps. The ideal balance would be a model 
that performs well across various participants, especially 
those not included in the training data. Figure  7 dem-
onstrates the problem of underfitting and overfitting in 
comparison to optimal model.

The curse of dimensionality
Contrary to common belief, having an abundance of fea-
tures does not necessarily enhance the performance and 
quality of ML tasks; in fact, it may adversely affect the 
performance and capability of ML algorithms [29, 60]. 
With an increase in the number of dimensions (or fea-
tures), the data points tend to become sparser. Each data 
point is situated in a high-dimensional space where it is 
improbable for all possible combinations of features to 
be present in the data. This sparsity complicates the task 
for ML algorithms to discern and capture significant pat-
terns and relationships within the data.

In a high-dimensional feature space—a dataset with 
hundreds or thousands of features—it is also likely that 
some features are interrelated or convey redundant 
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information. Such correlated features and redundant 
information can pose problems for ML modeling, poten-
tially degrading algorithm performance and, in some 
cases, leading to biased results and false pattern recog-
nition. These issues, which escalate as the dimensionality 
increases, are collectively known as ‘the curse of dimen-
sionality’ [60].

Addressing the problem of curse of dimensionality
The curse of dimensionality can be mitigated with 
both feature selection and dimensionality reduction 
[26, 27]. The choice could depend on a number of con-
siderations such as types of data and the problem at 
hand. Imagine a study that aims to predict individuals’ 
engagement in regular exercise based on a multitude 
of factors. These factors could include demographic 
information (age, gender, etc.), lifestyle factors (diet, 
smoking habits), environmental factors (access to 
parks, gyms), psychosocial factors (motivation, self-
efficacy), and even genetic markers, all of which could 
potentially be related to metabolism and physical 
activity. The goal of feature selection in this scenario 
would be to identify the most relevant and influential 
predictors of regular exercise from this extensive set of 
potential features. In the same scenario, dimensional-
ity reduction could help to identify patterns and cor-
relations among the multitude of features. It might 

reveal that certain lifestyle and environmental factors 
tend to cluster together, suggesting that a composite 
feature could be more relevant for modeling than the 
original features alone.

Another commonly used approach for mitigating the 
curse of dimensionality is feature selection guided by 
domain knowledge [25, 29]. For instance, consider a 
scenario where we are utilizing a ML approach to iden-
tify predictors of sitting time in office workers. While 
numerous predictors from various domains could 
potentially serve as inputs to the model, leveraging 
domain expertise can assist in prioritizing the selection 
of features that are relevant while considering feasibil-
ity and the potential for meaningful changes.

In this example, experts in occupational health and 
ergonomics might recommend prioritizing factors 
such as workstation setup, work schedule flexibility, 
and office ergonomics as primary considerations, while 
placing less emphasis on other relevant features that 
may be less relevant to workplace modifications, such 
as weight status, education, and diet. These experts 
understand that these aspects are not only linked to sit-
ting time but also represent actionable variables that 
organizations can address to promote healthier work 
habits. By concentrating on such modifiable factors, the 
ML model becomes not only more precise in its pre-
dictions but also more actionable in terms of suggest-
ing changes that can improve the well-being of office 
workers.

Fig. 6 Performance metrics for evaluation of a clusters analysis and b dimensionality reduction
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Fig. 7 a A regression problem with randomly generated data points is depicted. Varying the hyperparameter changes the model’s complexity 
(flexibility), resulting in three distinct cases: underfitting (the model is too simple to describe the underlying process, exhibiting high bias and low 
variance), a parsimonious fit (representing the least complex model that effectively describes the observed data), and overfitting (where the model 
is overly complex and fits noise, leading to high variance and low bias). b A classification problem with randomly generated data points is depicted, 
showing a similar scenario to the regression problem. c This sketch illustrates the relationship between total error and complexity when training 
a ML algorithm. A model that is overly simplistic can lead to a high total error, primarily due to underfitting. Increasing the model’s complexity may 
help reduce the error rate, but it is essential to find a ‘sweet spot’. Finding the sweet spot depends on the problem at hand and how much error 
can be tolerated. Increasing the model’s complexity excessively leads to overfitting. The parsimonious fit is achieved when the error is minimized, 
and the model has a reasonable level of complexity



Page 12 of 17Farrahi and Rostami  Journal of Activity, Sedentary and Sleep Behaviors             (2024) 3:5 

Selecting the hyperparameters
ML algorithms rely on a set of parameters to operate 
effectively, known as hyperparameters. These parameters 
play a crucial role in determining the accuracy of the final 
models and can significantly impact the interpretation 
of the results [61]. The importance of selecting proper 
hyperparameters can be clarified through a clustering 
analysis example. For instance, consider a dataset of indi-
viduals’ sleep behaviors, where the goal is to identify dis-
tinct groups of individuals with varying sleep patterns—a 
task that can be performed with K-means clustering algo-
rithm. Choosing the appropriate number of clusters for 
this problem is a critical decision, as it directly influences 
the granularity and interpretability of the results. Creat-
ing a higher number of clusters can lead to fine-grained 
distinctions among data points, potentially revealing sub-
tle patterns within the data. However, having a high num-
ber of clusters makes it difficult to extract meaningful 
insights. Conversely, selecting too few clusters may over-
simplify the analysis, obscuring important distinctions 
among groups. While the exact number of groups with 
distinct patterns of sleep behavior is not known a priori, 
the number of clusters is a hyperparameter that needs to 
be set before running the algorithm. Similarly, most ML 
algorithms also require the selection of several hyperpa-
rameters during model development and validation.

Machine learning use cases in behavioral physical 
activity, sedentary, and sleep research
The current section provided a brief overview of three 
areas related to physical activity, sedentary, and sleep 
behaviors where ML has been widely employed. It is 
hoped that the readers will derive ideas and inspiration 
from the case studies, which they can then apply to their 
own research domains.

Characterization and dimensions of movement 
and non‑movement behaviors from wearable devices
In the era of wearable devices, ML has emerged as a 
powerful and robust tool for transforming motion sig-
nals gathered from these devices into various variables 
such as postures, activity type, intensity, and duration of 
physical activity, sedentary behaviors, and sleep, among 
others [7, 62–64]. Prior to the prevalence of ML tech-
niques, analytical methods primarily focused on quan-
tifying movement intensity and energy expenditure 
derived from wearable devices [8, 65]. Traditionally, the 
measurement and categorization of movement behav-
iors from wearable data relied heavily on conventional 
statistical approaches. However, with the integration of 
ML methodologies, there has been a significant improve-
ment in the accurate measurement and classification of 
more complex movement behaviors and postures from 

wearables [8, 63]. Several studies have showcased the 
enhanced predictive abilities of ML in determining activ-
ity types, intensity levels, and energy expenditure com-
pared to other statistical methods [7, 8, 63].

In addition to the improved prediction accuracy, ML-
based models have been developed using relatively 
shorter time windows, typically ranging from 5 to 30 s, 
as opposed to the conventional 60-s intervals [8, 63]. The 
existing literature also suggests that ML holds the poten-
tial to address historical challenges linked to the different 
positioning of wearable devices on the body. For example, 
while wearable accelerometers worn on the thigh were 
once deemed essential for accurately identifying sit-to-
stand transitions and sitting patterns, recent studies have 
revealed that ML can achieve similarly accurate classifi-
cations when applied to data from devices worn on the 
hip [66]. Consistent with this trend, a systematic review 
examining the predictive accuracy of ML models for 
activity prediction noted that ML algorithms may possess 
the ability to predict activity types accurately, irrespective 
of the location where the wearable accelerometer-based 
activity monitor is positioned on the body [8].

Both supervised and unsupervised algorithms have 
been widely utilized to translate wearable motion signals 
into variables representing physical activity, sedentary 
behaviors, and sleep behaviors [8, 53]. More sophisti-
cated ML methodologies, such as ensemble methods that 
combine multiple ML algorithms, have been also pro-
posed and validated for this purpose [33, 67]. Despite this 
success, there remains uncertainty about which ML algo-
rithm is best suited for predicting movement behavior 
intensity, type, and energy expenditure. A notable draw-
back of existing studies is the development and validation 
of algorithms using limited data, typically involving few 
participants performing only a handful of activities [68]. 
Moreover, the accuracy of ML models is rarely assessed 
on an external dataset distinct from the one used for 
training [8]. Advancing the research in this field neces-
sitates testing ML algorithms under fully free-living con-
ditions, often termed as ‘in-the-wild’ scenarios. Future 
studies should prioritize assessing the generalization per-
formance of ML algorithms on datasets that differ from 
those used for their training.

Newer research is leveraging the power of ML to auto-
matically identify specific features that might exhibit cor-
relations with physical activity, sedentary behavior, and 
sleep behaviors [69, 70]. This may eventually lead to more 
harmonized analysis of wearable data through automa-
tion and increased objectivity achieved by machine intel-
ligence. Such innovative approach is exemplified in a 
recent study that employs an unsupervised methodology 
to independently uncover dimensions of accelerometry 
data that are closely linked with both sedentary behavior 
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and physical activity [70]. While the precise relationship 
between these machine-learned variables and various 
health outcomes, as well as their practical applications, 
are areas that require further exploration, it is likely that 
such variables could potentially be a better predictor of 
health and diseases [69]. An early demonstration of the 
effectiveness of ML for learning directly from wearable 
data is highlighted in another recent study where numer-
ous features extracted from accelerometer data were 
input into ML algorithms, leading to the remarkable pre-
diction of Parkinson’s disease onset years before clinical 
diagnosis [71]. Future studies should consider whether 
ML applied to movement data measured by wearables 
can predict future health conditions and diseases.

Profiling of movement and non‑movement behaviors
A notable feature of ML, setting it apart from traditional 
statistics, is its capacity to generate novel hypotheses 
from data. Unlike traditional hypothesis testing where 
researchers formulate a specific hypothesis and then 
test it against data, ML can be used to derive and gener-
ate hypotheses from data by seeking patterns and trends 
[14]. This principle has already served as the foundation 
for applying ML, particularly through unsupervised clus-
tering approaches, for the identification of previously 
unrecognized profiles of physical activity, sedentary, and 
sleep behaviors without having a predefined hypothesis 
[16, 19, 72, 73].

Studies employing ML approaches for data-driven pro-
file discovery have so far identified a number of profiles 
characterized by distinct patterns, variations, and tim-
ing of movement and non-movement behaviors [16, 30, 
74]. These machine-learned profiles appear to be impor-
tant and linked to a number of health markers, even 
after accounting for total amount time spent in physical 
activity, sedentary behaviors, and sleep [16, 30, 72, 74]. A 
good example of such research is a recent study utilizing 
clustering analysis to construct multidimensional sleep 
profiles based on multiple accelerometer-measured sleep 
characteristics, reflecting sleep quantity, quality, sched-
ule, variability, and regularity [75]. The study identified 
a total of five distinct sleep profiles, among which male 
individuals in the profile with sleep irregularity and vari-
ability exhibited elevated cardiometabolic risks.

Another significant aspect of ML approaches, which 
holds considerable potential for profile analysis, is 
the capability to merge diverse variables. This feature 
becomes particularly valuable when considering the inte-
gration of variables that may not all adhere to the same 
units of measurement, such as time. While in recent years 
there has been a tendency to utilize compositional data 
analysis approaches [2, 3, 76], such models remain to be 
primarily appropriate for examining the interdependent 

associations among physical activity, sedentary behavior 
and sleep—variables with same units of measurement. 
ML approaches can potentially be a better analytical tool 
for examining the potentially interdependent relation-
ships among diet, lifestyle behaviors, physical activity, 
sedentary and sleep behaviors—a scenario where ML 
approaches can potentially be a better analytical tool. An 
illustrative case is seen in a recent study that employed 
65 variables to characterize patterns of accumulation of 
sedentary time and sedentary breaks [72]. Through the 
utilization of the K-means clustering algorithm, the study 
identified four distinct profiles, each exhibiting unique 
patterns of accumulation of sedentary time and seden-
tary breaks. These differences were shown to be associ-
ated with markers of cardiometabolic health. Another 
example is a study that integrated 24-h physical activity, 
sedentary behaviors, and sleep with diet quality in the 
cluster analysis [77]. The identified profiles revealed that 
the combination of diet quality and use of time in a given 
day determines behavioral profiles that are significantly 
related to all-cause mortality.

One of the main challenges in applying ML to the data 
that are compositional in nature is that these approaches 
were not originally designed to handle compositional 
parts as a whole [78]. ML applied to compositional data 
still requires further development, and additional efforts 
are necessary to understand how to effectively utilize 
ML with such data. Thus far, there has been a tendency 
to rely on the K-means clustering algorithm and its vari-
ants for profiling physical activity, sedentary, and sleep 
behaviors [16, 19, 72, 79], likely due to their simplicity 
and efficiency. However, future research directions in 
profiling analysis should explore and assess alternative 
clustering algorithms. Current studies have generally 
been limited only to accommodate variables represent-
ing only physical activity, sedentary, and sleep behaviors 
without considering other lifestyle choices and health-
related behaviors [16, 19, 70, 77]. This limitation presents 
an opportunity to explore the potential of ML in identify-
ing clusters encompassing a broader spectrum of health-
related behaviors that may better predict future health 
status and diseases.

Machine learned correlates and determinants of activity, 
sedentary, and sleep behaviors
One of the most fundamental research questions related 
to human movement and non-movement behaviors is 
why some people choose to adopt healthier behaviors 
than others, such as being more active [80], experienc-
ing better sleep [81], and spending less time in sedentary 
[82]. This question is particularly complex because these 
behaviors are influenced by a multilevel hierarchy of fac-
tors, as diverse as personality [83], financial incentives 
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[84], weather conditions [85], among others [49]. Until 
now, the majority of previous studies studying the corre-
lates and determinates of physical activity, sedentary, and 
sleep behaviors have employed classical statistical mod-
eling, such as regression analyses [86, 87].

In classical statistics, these analyses tend to be lim-
ited by the data analyst’s decisions regarding how 
associations and interactions are hypothesized (knowl-
edge-driven). This limitation arises because the factors 
chosen for inclusion in the analyses are primarily subjec-
tive, selected based on their conceptual relevance and, in 
some instances, initial empirical associations. Such anal-
yses may hinder the identification of novel and innovative 
categories of correlates essential for advancing this field 
further [49, 88]. To overcome these limitations, embrac-
ing more flexible and exploratory methods that allow for 
the identification of possibly unforeseen correlations and 
interactions could be beneficial.

In particular, ML algorithms that generate hierarchi-
cal models appear to be ideally suited for addressing this 
research challenge. Multiple studies have employed deci-
sion trees [50], random forests [89], and other ML algo-
rithms [90] to automatically seek through extensive lists 
of potential predictors and identify the most influential 
ones for physical activity, sedentary, and sleep behaviors. 
ML algorithms have also been used to construct an inter-
connected web of factors influencing these behaviors 
based on empirical data [49, 50, 90]. These studies have 
even revealed previously less established and unknown 
factors that hold the potential to explain these behaviors 
[49].

It seems that tree-based algorithms are most commonly 
utilized in research on correlates and determinants [49, 
50], possibly owing to the transparency they offer in the 
final model. There exists a diverse spectrum of ML algo-
rithms, in addition to hierarchical and tree-based models, 
that can potentially be applied in the research of corre-
lates and determinants. This warrants further research 
into utilizing ML algorithms and approaches for correlate 
and determinant research, which may accordingly lead 
to the discovery of previously unrecognized associations 
and promoting the advancement of the field by uncover-
ing novel insights.

For instance, ML can also be employed to address 
the causal questions—such as why some people choose 
to have healthier behaviors. An emerging field in ML 
known as causal ML offers a promising avenue for health 
research [91]. Such techniques can separate each causal 
pathway to measure the treatment effect of interest. 
Although still in its infancy, causal ML holds the poten-
tial to answer many challenging questions that have 
traditionally relied on theoretical approaches like eco-
logical modeling [92]. As innovative ML methodologies 

continue to advance, it is likely that utilizing these tech-
niques to analyze both movement and non-movement 
behavioral data will offer a more profound comprehen-
sion of human behavior.

Concluding remarks
ML provides a hypothesis-free approach for modelling 
complex datasets when the interaction and interrela-
tionships between measured variables are complicated. 
These methodologies overcome the constraints of many 
classical statistical models and offer an alternative option 
for making sense of physical activity, sedentary, and 
sleep behavior data, and generating innovative hypoth-
eses from these data. We presented the ML modelling 
process, providing a detailed breakdown of each step to 
facilitate the application of ML techniques in the analysis 
of physical activity, sedentary, and sleep behaviors data. 
We also presented three areas of research where ML has 
been widely adopted and has achieved considerable suc-
cess, demonstrating how ML may go beyond traditional 
statistics for addressing critical questions in physical 
activity, sedentary, and sleep behaviors research. ML will 
play a pivotal role in translating complex data sets into 
scientific knowledge and will become a proper addition 
to existing analytical tools.

Nowadays, thanks to advancements in high-level pro-
gramming and the widespread availability of open-source 
languages such as Python and R, implementing ML 
through coding has become more accessible than ever 
[93]. ML algorithms are now commonly integrated into 
most statistical software and programs. Even those soft-
ware platforms that are traditionally used for perform-
ing classical statistics now include some ML algorithms. 
ML tools can be broadly categorized into two groups: 
those that require at least some coding skills and those 
that offer a drag-and-drop interface. Table 1 shows a non-
exhaustive list of software and statistical packages that 
can be used for ML modeling.

Despite its popularity and success, ML has a few 
notable limitations that are important to consider. ML 
algorithms seek patterns in the data or learn the rela-
tionships that are optimal for predicting outcomes 
without a priori assumptions. While advantageous, 
this can introduce a conflict between the way humans 
and machines perceive these patterns [94]. Over-
all, ML models are typically considered as ‘black box’ 
approaches. In many applications, including research 
on physical activity, sedentary behavior, and sleep, 
understanding why a machine has learned to make 
its predictions may be more important than focus-
ing solely on accuracy. Currently, explainable artificial 
intelligence (XAI) is an active field of research, focus-
ing particularly on improving the transparency and 
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interpretability of ML [94]. Nevertheless, the interpret-
ability of ML approaches is still a concern in public and 
population health research.

Most recently, deep learning—a subfield of ML—has 
gained significant attention for its excellence in vari-
ous supervised and unsupervised learning problems. 
Deep learning techniques focus on the use of neural 
networks with multiple layers—hence the term deep—
to model and solve complex tasks [95]. A distinct char-
acteristic that sets deep learning apart from other ML 
approaches is its ability to automatically learn and rep-
resent data features. Although the application of deep 
learning to the research of physical activity, sedentary 
behavior, and sleep is still emerging, these techniques 
have shown their versatility and effectiveness across 
various domains. For instance, deep learning has been 
employed in classifying movement behaviors [33] and 
designing physical activity recommender systems 
aimed at promoting active lifestyles [96]. We antici-
pate that as ML and deep learning techniques continue 
to evolve and demonstrate exceptional accuracy, their 
widespread adoption will significantly enhance their 
utility in analyzing and exploring device-estimated 
behaviors related to physical activity, sedentariness, 
and sleep.
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